python - Pandas - Convert dictionary to dataframe - keys as columns -
i have folder .csv files contain timeseries in following format:
1 0.950861 2 2.34248 3 2.56038 4 3.46226 ...
i access these textfiles looping on folder containing files , passing each textfile dictionary:
data_dict = {textfile: pd.read_csv(textfile, header=3, delim_whitespace=true, index_col=0) textfile in textfiles}
i want merge columns, contain data next each other dictionary keys index (pathname of textfiles). have same row number.
so far tried passing dictionary pd.dataframe this:
df = pd.dataframe.from_dict(data_dict, orient='index')
actually, orientation needs default 'columns', results in error: value error: if using scalar values, must pass index
if so, wrong result: excel_output
this how pass frame excel:
writer = pd.excelwriter("output.xls") df.to_excel(writer,'data', index_label = 'data', merge_cells =false) writer.save()
i think error must in passing dictionary dataframe. tried pd.concat/merge/append nothing returns right result.
thanks in advance!
iiuc can try list comprehension
concat
:
data_list = [pd.read_csv(textfile, header=3, delim_whitespace=true, index_col=0) textfile in textfiles] print (pd.concat(data_list, axis=1))
Comments
Post a Comment