Gradient Descent algorithm not converging in Haskell -


i trying implement gradient descent algorithm in andrew ng's ml course. after reading in data, try implement following, updating list of theta values 1000 times, expectation of convergence.enter image description here

the algorithm in question gradientdescent. know typically cause of problem alpha can large, when change alpha factor of n example, results change factor of n. same happens when change iterations factor of n. want haskell's laziness, i'm unsure. appreciated.

module lr1v  import qualified data.matrix m import system.io import data.list.split import qualified data.vector v  main :: io () main =     contents <- getcontents     let lns = lines contents :: [string]         entries = map (spliton ",") lns :: [[string]]         mbpoints = mapm readpoints entries :: maybe [[double]]     case mbpoints of          points -> rundata points         _           -> putstrln "error: possible file incorrectly formatted"  readpoints :: [string] -> maybe [double] readpoints dat@(x:y:_) = return $ map read dat readpoints _ = nothing  rundata :: [[double]] -> io () rundata pts =     let (mxs,ys) = runpoints pts         c = m.ncols mxs         m = m.nrows mxs         thetas = m.zero 1 (m.ncols mxs)         alpha = 0.01         iterations = 1000         results = gradientdescent mxs ys thetas alpha m c iterations     print results  runpoints :: [[double]] -> (m.matrix double, [double]) runpoints pts = (xs, ys)     xs = m.fromlists $ addx0 $ map init pts     ys = map last pts  -- x0 1 addx0 :: [[double]] -> [[double]] addx0 = map (1.0 :)  -- theta 1xn , x nx1, n amount of features -- safe assume scalar results multiplication hypothesis :: m.matrix double -> m.matrix double -> double hypothesis thetas x =      m.getelem 1 1 (m.multstd thetas x)  gradientdescent :: m.matrix double                    -> [double]                     -> m.matrix double                    -> double                     -> int                     -> int                     -> int                    -> [double] gradientdescent mxs ys thetas alpha m n =      let x = m.colvector $ m.getrow mxs         y = ys !! (i-1)         h = hypothesis thetas (x i)         thl = zip [1..] $ m.tolist thetas :: [(int, double)]         z j = ((h i) - (y i))*(m.getelem j $ mxs)         sumsquares j = sum [z j | <- [1..m]]         thetaj t j = t - ((alpha * (1/ (fromintegral m))) * (sumsquares j))         result = map snd $ foldl (\ts _ -> [(j,thetaj t j) | (j,t) <- ts]) thl [1..it] in     result 

and data...

6.1101,17.592 5.5277,9.1302 8.5186,13.662 7.0032,11.854 5.8598,6.8233 8.3829,11.886 7.4764,4.3483 8.5781,12 6.4862,6.5987 5.0546,3.8166 5.7107,3.2522 14.164,15.505 5.734,3.1551 8.4084,7.2258 5.6407,0.71618 5.3794,3.5129 6.3654,5.3048 5.1301,0.56077 6.4296,3.6518 7.0708,5.3893 6.1891,3.1386 20.27,21.767 5.4901,4.263 6.3261,5.1875 5.5649,3.0825 18.945,22.638 12.828,13.501 10.957,7.0467 13.176,14.692 22.203,24.147 5.2524,-1.22 6.5894,5.9966 9.2482,12.134 5.8918,1.8495 8.2111,6.5426 7.9334,4.5623 8.0959,4.1164 5.6063,3.3928 12.836,10.117 6.3534,5.4974 5.4069,0.55657 6.8825,3.9115 11.708,5.3854 5.7737,2.4406 7.8247,6.7318 7.0931,1.0463 5.0702,5.1337 5.8014,1.844 11.7,8.0043 5.5416,1.0179 7.5402,6.7504 5.3077,1.8396 7.4239,4.2885 7.6031,4.9981 6.3328,1.4233 6.3589,-1.4211 6.2742,2.4756 5.6397,4.6042 9.3102,3.9624 9.4536,5.4141 8.8254,5.1694 5.1793,-0.74279 21.279,17.929 14.908,12.054 18.959,17.054 7.2182,4.8852 8.2951,5.7442 10.236,7.7754 5.4994,1.0173 20.341,20.992 10.136,6.6799 7.3345,4.0259 6.0062,1.2784 7.2259,3.3411 5.0269,-2.6807 6.5479,0.29678 7.5386,3.8845 5.0365,5.7014 10.274,6.7526 5.1077,2.0576 5.7292,0.47953 5.1884,0.20421 6.3557,0.67861 9.7687,7.5435 6.5159,5.3436 8.5172,4.2415 9.1802,6.7981 6.002,0.92695 5.5204,0.152 5.0594,2.8214 5.7077,1.8451 7.6366,4.2959 5.8707,7.2029 5.3054,1.9869 8.2934,0.14454 13.394,9.0551 5.4369,0.61705 

when alpha 0.01, thetas evaluate [58.39135051546406,653.2884974555699]. when alpha 0.001 values become [5.839135051546473,65.32884974555617]. when iterations changed 10,000 values return before.

it appears each run of updating theta values, approximation function h(x) using initial theta vector each time, rather updated vector. now, alright approximation of theta values. however, increasing number of iterations large factor changes results in odd way.


Comments

Popular posts from this blog

aws api gateway - SerializationException in posting new Records via Dynamodb Proxy Service in API -

asp.net - Problems sending emails from forum -