scala - xgboost4j - spark evaluate requires RDD[(Double, Double)] -
i try use xgboost4j spark 2.0.1 , dataset api. far obtained predictions in following format using model.transform(testdata)
predictions.printschema root |-- label: double (nullable = true) |-- features: vector (nullable = true) |-- probabilities: vector (nullable = true) |-- prediction: double (nullable = true) +-----+--------------------+--------------------+----------+ |label| features| probabilities|prediction| +-----+--------------------+--------------------+----------+ | 0.0|[0.0,1.0,0.0,476....|[0.96766251325607...| 0.0| | 0.0|[0.0,1.0,0.0,642....|[0.99599152803421...| 0.0|
but generate evaluation metrics. how can map predictions right format? xgboost-4j dmlc on spark-1.6.1 propose similar problem, not work me.
val metrics = new binaryclassificationmetrics(predictions.select("prediction", "label").rdd) require rdd[(double, double)]
instead of predictions.select("prediction", "label")
looks like
root |-- label: double (nullable = true) |-- prediction: double (nullable = true)
tryping map required tuple like:
predictions.select("prediction", "label").map{case row(_) => (_,_)}
fails work well.
edit
reading bit more in sparks documentation found http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.ml.evaluation.binaryclassificationevaluator supports ml instead of ml-lib e.g. datasets. far not integrate xgboost4j in pipeline.
here example https://github.com/dmlc/xgboost/blob/master/jvm-packages/xgboost4j-example/src/main/scala/ml/dmlc/xgboost4j/scala/example/spark/sparkmodeltuningtool.scala how use xgboost4j in spark pipeline. in fact, have xgboostestimator plays in pipeline.
Comments
Post a Comment